Motivation and Challenges Methods Results

HAWIS: Hardware-Aware Automated WIdth Search for Accurate, Energy-Efficient and Robust Binary Neural Network on ReRAM Dot-Product Engine

Qidong Tang, Zhezhi He*, Fangxin Liu, Zongwu Wang, Yiyuan Zhou, Yinghuan Zhang and Li Jiang*

Shanghai Jiao Tong University

tangqidong@sjtu.edu.cn

December 11 2021

Motivation and Challenges Methods

Results

Background Motivation Challenges

PIM and ReRAM

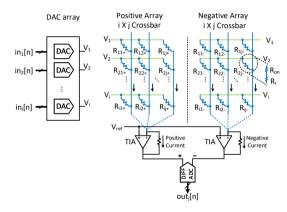


Fig. Hardware implementation of $M \times M$ ReRAM crossbar array pair as an analog dot-product engine.

- 1. ReRAM represents the weight by dividing the resistance range into multiple intervals.
- The input is encoded as binary bit-strings in_i[n] for crossbar input with DACs.
- 3.

$$I_k = \sum_{i=1}^M \left(rac{V_i}{R_{ik}^+} - rac{V_i}{R_{ik}^-}
ight)$$

The current is transformed into digital calculation results with ADCs.

Why BNN on ReRAM?

Motivations to deploy BNN (1 bit network) to ReRAM:

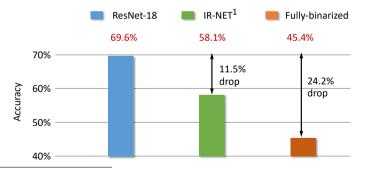
- 1. Simplify the hardware-expensive peripheral circuits (e.g, DAC), which commonly consume a great portion of (> 50%) on-chip area and energy.
- 2. Minimize the storage footprint and reduce the model size by $32 \times$.
- 3. Superior bit error tolerance¹, which inspires us to make use of this capability to overcome the severe device defects in ReRAM, such as resistance variation and Stuck-At-Fault (SAF).

¹Adnan Siraj Rakin, Zhezhi He e Deliang Fan. "Bit-flip attack: Crushing neural network with progressive bit search". Em: *ICCV*. 2019.

Motivation and Challenges Background Methods Motivation Results Challenges

Challenges to deploy BNN on ReRAM?

- 1. Drastic accuracy degradation²(11.5% accuracy drop);
- 2. Applying binarization to the whole network will further lower the accuracy(24.2% accuracy drop).



²Haotong Qin et al. "Forward and backward information retention for accurate binary neural networks". Em: CVPR. 2020.

Ord	ong	lan	

Motivation and Challenges Methods Results Background Motivation Challenges

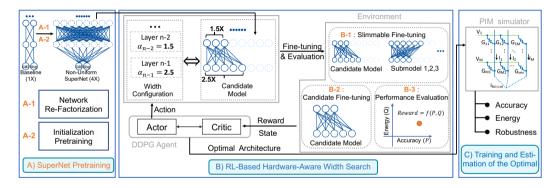
Our main idea - searching the width of BNN on ReRAM.

It is effective to widen the quantized network to mitigate the accuracy drop³,⁴. However, the same expansion ratio across the network leads to model overfitting. \Rightarrow Thus we utilize reinforcement learning to determine the specific width layer by layer.

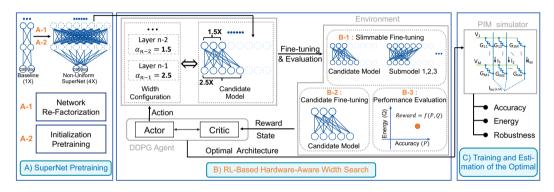
	Res-20 CIFAR10		Res-32 CIFAR10		Res-18 ImageNet	
Model	Energy (μJ)	Acc. (%)	Energy (μJ)	Acc. (%)	Energy (<i>mJ</i>)	Acc. (%)
Quan-8bit	1387	92.2	2349	92.9	66.5	69.8
Uniform-BNN 1×	32.7	81.22	50.6	83.91	3.8	51.92
Uniform-BNN 2×	120	88.95	195	90.22	8.2	63.38
Uniform-BNN 3 $ imes$	238	91.4	393	92.11	15.0	66.57
Uniform-BNN 4 $ imes$	503	92.17	893	92.49	25.1	68.19
Uniform-BNN 5 $ imes$	924	92.77	1571	93.00	43.5	69.22
Uniform-BNN 6 $ imes$	1176	92.78	1984	93.07	-	-

³Asit Mishra et al. "WRPN: Wide reduced-precision networks". Em: *ICLR* (2018).

⁴Mingzhu Shen et al. "Searching for accurate binary neural architectures". Em: *ICCV Workshops*. 2019.

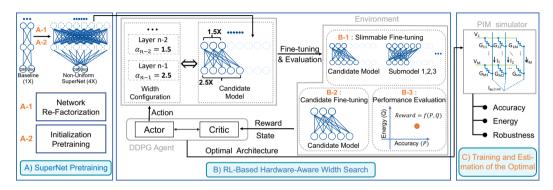


A). Train a binarized super-net.



A). Train a binarized super-net.

B). Leverage reinforcement learning to search for the width layer-by-layer.



- A). Train a binarized super-net.
- B). Leverage reinforcement learning to search for the width layer-by-layer.
- C). Estimate the accuracy, energy consumption and robustness.

Stage-A creates and pretrains a binarized super-net, greatly reducing the search cost.

Binarization Function Insertion to all parametric layers.

Stage-A creates and pretrains a binarized super-net, greatly reducing the search cost.

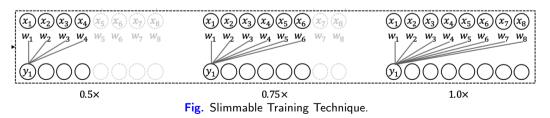
- **Binarization Function Insertion** to all parametric layers.
- **Topology Modification**: remove the avg-pooling. $(45.43\% \rightarrow 50.24\%)$

Stage-A creates and pretrains a binarized super-net, greatly reducing the search cost.

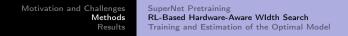
- Binarization Function Insertion to all parametric layers.
- **Topology Modification**: remove the avg-pooling. $(45.43\% \rightarrow 50.24\%)$
- ► Two-Side Regularization: $\Omega(w) = \sum_{i} (|w_i| w_0)^2$ (50.24% → 51.92%)

Stage-A creates and pretrains a binarized super-net, greatly reducing the search cost.

- Binarization Function Insertion to all parametric layers.
- ▶ Topology Modification: remove the avg-pooling. $(45.43\% \rightarrow 50.24\%)$
- Two-Side Regularization: $\Omega(w) = \sum_i (|w_i| w_0)^2$ (50.24% \rightarrow 51.92%)
- Uniform Layer Width Expansion and Pretraining. Uniformly expand the binarized baseline to create the super-net. Leverage the slimmable training technique to pretrain the super-net.

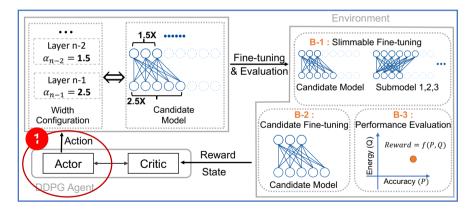


Qidong Tang HAW/IS 13 / 29

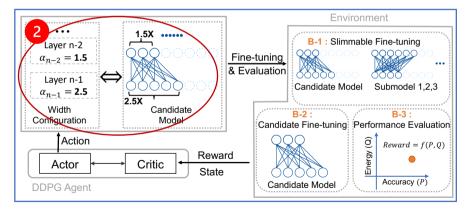


In stage-B, we leverage RL to determine the width in a layer-by-layer manner.

1. The agent takes the state as input and outputs an action (the width configuration).

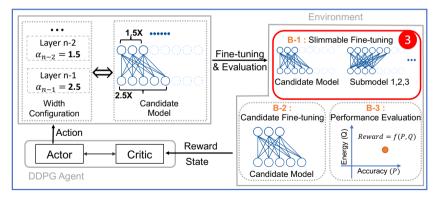


- 1. The agent takes the state as input and outputs an action (the width configuration).
- 2. A candidate model w.r.t the current width configuration is generated.

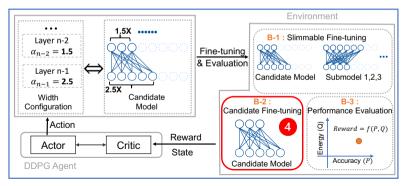


(.) IC	long	lang

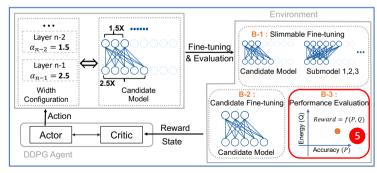
- 1. The agent takes the state as input and outputs an action (the width configuration).
- 2. A candidate model w.r.t the current width configuration is generated.
- 3. Slimmable fine-tuning first updates the super-net (B-1).



- 1. The agent takes the state as input and outputs an action (the width configuration).
- 2. A candidate model w.r.t the current width configuration is generated.
- 3. Slimmable fine-tuning first updates the super-net (B-1).
- 4. The candidate is initialized according to the super-net and fine-tuned few epochs (B-2).

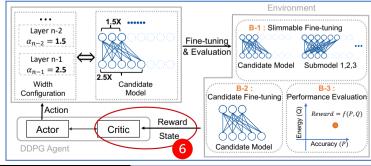


- 1. The agent takes the state as input and outputs an action (the width configuration).
- 2. A candidate model w.r.t the current width configuration is generated.
- 3. Slimmable fine-tuning first updates the super-net (B-1).
- 4. The candidate is initialized according to the super-net and fine-tuned few epochs (B-2).
- 5. Performance evaluation estimates the accuracy and energy consumption (B-3).



In stage-B, we leverage RL to determine the width in a layer-by-layer manner.

- 1. The agent takes the state as input and outputs an action (the width configuration).
- 2. A candidate model w.r.t the current width configuration is generated.
- 3. Slimmable fine-tuning first updates the super-net (B-1).
- 4. The candidate is initialized according to the super-net and fine-tuned few epochs (B-2).
- 5. Performance evaluation estimates the accuracy and energy consumption (B-3).
- 6. The reward is returned to update the agent and generate actions in the successive episode.



Qidong Tang

HAWIS

1. Problem Formulation:

 $\mathcal{A}_{
m b}$ — binarized baseline;

 $\mathcal{B}_{\rm b}$ — sampled sub-net during the search.

$$\mathcal{R} = - \overbrace{\mathsf{Error}\left(\mathcal{B}^{*}_{\mathrm{b}}(\hat{\boldsymbol{\theta}}), \mathsf{X}_{\mathrm{eval}}\right)}^{\mathsf{Accuracy} \quad \mathsf{Gap}} \cdot \overbrace{\mathsf{log} \frac{Q\left(\mathcal{B}^{*}_{\mathrm{b}}(\hat{\boldsymbol{\theta}})\right)/\lambda}{Q\left(\mathcal{A}_{\mathrm{b}}\right)}}^{\mathsf{Energy} \quad \mathsf{Consumption}}$$

(1)

2. State Space:

$$m{s}_l = (l, l_{\mathrm{s}}, c_{\mathrm{in}}, c_{\mathrm{out}}, n_{\mathrm{ker}}, n_{\mathrm{str}}, n_{\mathrm{param}}, n_{\mathrm{fmap}}, a_{l-1}, c_{l-1})$$

- $I, I_{\rm s}$ layer/block index; $c_{\rm in}, c_{\rm out}$ — #(input/output channels);
- $n_{\rm ker}, n_{\rm str}$ kernel/stride size;
 - $n_{\text{param}} \#(\text{parameter});$
 - n_{fmap} #(feature map);
 - a_{l-1} action of the previous layer;
 - c_{l-1} expanded channel number of the previous layer.

3. Action Space:

- a_I action for *I*-th layer;
- r_{l} expansion ratio for *l*-th layer;
- c_{I} the actual channel number of *I*-th layer.

$$r_l = a_l (r_{\max} - r_{\min}) + r_{\min}$$

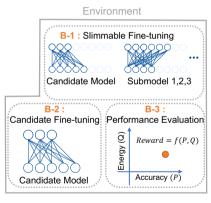
 $c_l = \text{round} (c_{\text{out}} \cdot r_l/d) \cdot d$

Motivation and Challenges Supe Methods RL-B Results Train

SuperNet Pretraining RL-Based Hardware-Aware WIdth Search Training and Estimation of the Optimal Model

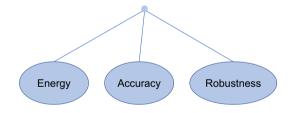
4. Environment:

- B-1) : Slimmable training technique updates the super-net for 1 epoch on the training data.
- B-2): Customized fine-tuning for the candidate model for a few epochs.
- B-3): Estimate the accuracy and energy consumption of the candidate model on the evaluation data.



Training and Estimation of the Optimal Model

Train from scratch, estimate the final accuracy, energy consumption and robustness under device defects.



Qidong Tang	HAWIS	24 / 29
-------------	-------	---------

Motivation and Challenges	Comparison Against High Bit-width and Uniformly Widened Binary Networks
Methods	Comparison Against State-of-the-Art Efficient Models
	Robustness Under Device Defects
Results	Analysis of the Searched Architecture

/ 29

Table. Comparison of High Bit-width, Uniformly Widened Binarized (U-) and HAWIS networks.

	Res-20 CIFAR10		Res-32	CIFAR10	Res-18 ImageNet	
Model	Energy (μJ)	Acc. (%)	Energy (μJ)	Acc. (%)	Energy (<i>mJ</i>)	Acc. (%)
FP	-	92.1	-	92.8	-	69.6
Quan-8bit	1387	92.2	2349	92.9	66.5	69.8
$U-1 \times$	32.7	81.22	50.6	83.91	3.8	51.92
U-2×	120	88.95	195	90.22	8.2	63.38
U-3×	238	91.4	393	92.11	15.0	66.57
$U-4\times$	503	92.17	893	92.49	25.1	68.19
$U-5\times$	924	92.77	1571	93.00	43.5	69.22
$U-6\times$	1176	92.78	1984	93.07	-	-
HAWIS-A	368	92.42	949	92.91	21.3	68.21
HAWIS-B	849	93.13	1045	93.18	29.4	69.29

- 1. HAWIS models achieve better overall performance, which consume less energy to reach similar accuracy of uniformly widened BNNs.
- 2. On CIFAR-10, HAWIS-A models reach the accuracy of Quan-8bit models. On ImageNet, the accuracy of HAWIS-B is 0.5% lower than that of Quan-8bit model.

Motivation and Challenges Methods **Results** Comparison Against High Bit-width and Uniformly Widened Binary Network Comparison Against State-of-the-Art Efficient Models Robustness Under Device Defects Analysis of the Searched Architecture

Comparison Against State-of-the-Art Efficient Models

Arch	Precision (W/A)	$\substack{\text{BiOps}\\ (\times 10^6)}$	$FLOPs(\times 10^6)$	Search Cost (GPU-days)	Top-1 (%)
ResNet-20 [resnet]	8/8	0	41	-	92.2
Bi-Real-18 [bi-real]	1/1	561	11	-	91.2
BARS [bars]	1/1	1048	2	-	92.98
BNAS [bnas zeroise]	1/1	670	3	0.42	92.7
BATS [bulat2020bats]	1/1	410	30	0.25	93.7
HAWIS	1/1	1100	0	1.25	93.13

Table. Performance and Complexity Comparison on CIFAR-10.

Arch	Precision (W/A)	$_{(\times 10^9)}^{\rm BiOps}$	$FLOPs(\times 10^8)$	Search Cost (GPU-days)	Top-1 (%)
Resnet-18 [resnet]	8/8	0	18.2	-	69.8
Bi-Real-18 [bi-real]	1/1	1.68	1.38	-	56.4
Bi-Real-34 [bi-real]	1/1	3.53	1.39	-	62.2
MeliusNet-42 [melius]	1/1	9.69	1.74	-	69.2
FracBNN [FracBNN]	1/1.4	7.30.	0.01	-	71.8
BARS [bars]	1/1	2.59	2.54	-	60.3
BNAS [bnas_zeroise]	1/1	15.30	4.10	0.42	63.5
BATS [bulat2020bats]	1/1	2.16	1.21	0.25	66.1
Res18-Auto [4]	1/1	19.40	3.55	60	69.7
HAWIS	1/1	37.8	0	16	69.3

Table. Performance and Complexity Comparison on ImageNet.

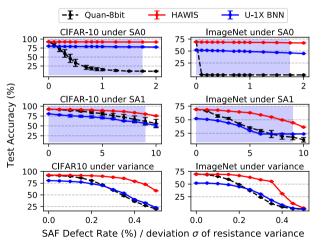
- 1. HAWIS on CIFAR-10, with fully binarized layers, outperforms all above efficient models except BATS (many full-precision operations).
- 2. On ImageNet, HAWIS outperforms most manually designed BNNS and Binary NAS methods which still own a large part of FLOPs.

Qidong Tang

HAWIS

Motivation and Challenges Methods Results Comparison Against High Bit-width and Uniformly Widened Binary Network Comparison Against State-of-the-Art Efficient Models Robustness Under Device Defects Analysis of the Searched Architecture

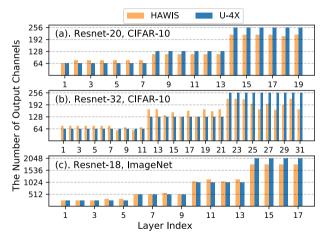
Robustness Under Device Defects



- 1. Quan-8bit networks are susceptible to SA0 defects, while binarized models keep stable accuracy under SA0 defects.
- 2. U-1 \times BNN is more robust than Quan-8bit models under SA1 and resistance variation, while HAWIS further improves the robustness of the binary baseline.

Motivation and Challenges Methods Results Comparison Against High Bit-width and Uniformly Widened Binary Network Comparison Against State-of-the-Art Efficient Models Robustness Under Device Defects Analysis of the Searched Architecture

Analysis of the Searched Architecture



- 1. HAWIS architectures commonly possess more channels in the front layers and fewer channels in the tail layers.
- 2. HAWIS has a bottleneck-like structure in ResNet-32.(narrow width for 8/18/28 and larger width for 9/19/29-th layer).
- 3. The selected channel numbers are energy-efficient(full utilization).

Motivation and Challenge Methoc Resu lt	s Comparison Against State-of-the-Art Efficient Models
--	--

Thanks for your listening!