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Why BNN on ReRAM?

Motivations to deploy BNN (1 bit network) to ReRAM:
1. Simplify the hardware-expensive peripheral circuits (e.g, DAC), which commonly

consume a great portion of (> 50%) on-chip area and energy.
2. Minimize the storage footprint and reduce the model size by 32⇥.
3. Superior bit error tolerance1, which inspires us to make use of this capability to

overcome the severe device defects in ReRAM, such as resistance variation and
Stuck-At-Fault (SAF).

1Adnan Siraj Rakin, Zhezhi He e Deliang Fan. “Bit-flip attack: Crushing neural network with progressive bit search”. Em: ICCV.
2019.
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Challenges to deploy BNN on ReRAM?

1. Drastic accuracy degradation2( 11.5% accuracy drop);
2. Applying binarization to the whole network will further lower the accuracy( 24.2%

accuracy drop).
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2Haotong Qin et al. “Forward and backward information retention for accurate binary neural networks”. Em: CVPR. 2020.
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Our main idea – searching the width of BNN on ReRAM.
It is effective to widen the quantized network to mitigate the accuracy drop3 ,4.
However, the same expansion ratio across the network leads to model overfitting.
) Thus we utilize reinforcement learning to determine the specific width layer by layer.

Model

Res-20 CIFAR10 Res-32 CIFAR10 Res-18 ImageNet

Energy Acc. Energy Acc. Energy Acc.
(µJ) (%) (µJ) (%) (mJ) (%)

Quan-8bit 1387 92.2 2349 92.9 66.5 69.8

Uniform-BNN 1⇥ 32.7 81.22 50.6 83.91 3.8 51.92
Uniform-BNN 2⇥ 120 88.95 195 90.22 8.2 63.38
Uniform-BNN 3⇥ 238 91.4 393 92.11 15.0 66.57
Uniform-BNN 4⇥ 503 92.17 893 92.49 25.1 68.19
Uniform-BNN 5⇥ 924 92.77 1571 93.00 43.5 69.22
Uniform-BNN 6⇥ 1176 92.78 1984 93.07 - -

3Asit Mishra et al. “WRPN: Wide reduced-precision networks”. Em: ICLR (2018).
4Mingzhu Shen et al. “Searching for accurate binary neural architectures”. Em: ICCV Workshops. 2019.
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B). Leverage reinforcement learning to search for the width layer-by-layer.
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Stage-A creates and pretrains a binarized super-net, greatly reducing the search cost.
I Binarization Function Insertion to all parametric layers.
I Topology Modification: remove the avg-pooling. (45.43% ! 50.24%)
I Two-Side Regularization: ⌦(w) =

P
i (|wi |� w0)2 (50.24% ! 51.92%)

I Uniform Layer Width Expansion and Pretraining. Uniformly expand the
binarized baseline to create the super-net. Leverage the slimmable training
technique to pretrain the super-net.

Fig. Slimmable Training Technique.
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In stage-B, we leverage RL to determine the width in a layer-by-layer manner.
1. The agent takes the state as input and outputs an action (the width configuration).
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1. The agent takes the state as input and outputs an action (the width configuration).
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3. Slimmable fine-tuning first updates the super-net (B-1).
4. The candidate is initialized according to the super-net and fine-tuned few epochs (B-2).
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1. Problem Formulation:
Ab — binarized baseline;
Bb — sampled sub-net during the search.
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2. State Space:

sl = (l , ls, cin, cout, nker, nstr, nparam, nfmap, al�1, cl�1)

l , ls — layer/block index;
cin, cout — #(input/output channels);
nker, nstr — kernel/stride size;
nparam — #(parameter);
nfmap — #(feature map);
al�1 — action of the previous layer;
cl�1 — expanded channel number of the previous layer.
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3. Action Space:
al — action for l-th layer;
rl — expansion ratio for l-th layer;
cl — the actual channel number of l-th layer.

rl = al (rmax � rmin) + rmin

cl = round (cout · rl/d) · d
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4. Environment:

I B-1) : Slimmable training technique updates the
super-net for 1 epoch on the training data.

I B-2): Customized fine-tuning for the candidate model
for a few epochs.

I B-3): Estimate the accuracy and energy consumption
of the candidate model on the evaluation data.
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Training and Estimation of the Optimal Model

Train from scratch, estimate the final accuracy, energy consumption and robustness
under device defects.

AccuracyEnergy Robustness
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Table. Comparison of High Bit-width, Uniformly Widened Binarized (U-) and HAWIS networks.

Model

Res-20 CIFAR10 Res-32 CIFAR10 Res-18 ImageNet

Energy Acc. Energy Acc. Energy Acc.
(µJ) (%) (µJ) (%) (mJ) (%)

FP - 92.1 - 92.8 - 69.6
Quan-8bit 1387 92.2 2349 92.9 66.5 69.8

U-1⇥ 32.7 81.22 50.6 83.91 3.8 51.92
U-2⇥ 120 88.95 195 90.22 8.2 63.38
U-3⇥ 238 91.4 393 92.11 15.0 66.57
U-4⇥ 503 92.17 893 92.49 25.1 68.19
U-5⇥ 924 92.77 1571 93.00 43.5 69.22
U-6⇥ 1176 92.78 1984 93.07 - -

HAWIS-A 368 92.42 949 92.91 21.3 68.21
HAWIS-B 849 93.13 1045 93.18 29.4 69.29

1. HAWIS models achieve better overall performance, which consume less energy to reach similar
accuracy of uniformly widened BNNs.

2. On CIFAR-10, HAWIS-A models reach the accuracy of Quan-8bit models. On ImageNet, the
accuracy of HAWIS-B is 0.5% lower than that of Quan-8bit model.
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Comparison Against State-of-the-Art Efficient Models

Table. Performance and Complexity Comparison on CIFAR-10.

Arch Precision BiOps FLOPs Search Cost Top-1
(W/A) (⇥106) (⇥106) (GPU-days) (%)

ResNet-20 [resnet] 8/8 0 41 - 92.2
Bi-Real-18 [bi-real] 1/1 561 11 - 91.2

BARS [bars] 1/1 1048 2 - 92.98
BNAS [bnas_zeroise] 1/1 670 3 0.42 92.7
BATS [bulat2020bats] 1/1 410 30 0.25 93.7

HAWIS 1/1 1100 0 1.25 93.13

Table. Performance and Complexity Comparison on ImageNet.

Arch Precision BiOps FLOPs Search Cost Top-1
(W/A) (⇥109) (⇥108) (GPU-days) (%)

Resnet-18 [resnet] 8/8 0 18.2 - 69.8
Bi-Real-18 [bi-real] 1/1 1.68 1.38 - 56.4
Bi-Real-34 [bi-real] 1/1 3.53 1.39 - 62.2

MeliusNet-42 [melius] 1/1 9.69 1.74 - 69.2
FracBNN [FracBNN] 1/1.4 7.30. 0.01 - 71.8

BARS [bars] 1/1 2.59 2.54 - 60.3
BNAS [bnas_zeroise] 1/1 15.30 4.10 0.42 63.5
BATS [bulat2020bats] 1/1 2.16 1.21 0.25 66.1

Res18-Auto [4] 1/1 19.40 3.55 60 69.7

HAWIS 1/1 37.8 0 16 69.3

1. HAWIS on CIFAR-10, with fully binarized layers, outperforms all above efficient models
except BATS (many full-precision operations).

2. On ImageNet, HAWIS outperforms most manually designed BNNS and Binary NAS
methods which still own a large part of FLOPs.
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Robustness Under Device Defects

1. Quan-8bit networks are susceptible to SA0
defects, while binarized models keep stable
accuracy under SA0 defects.

2. U-1⇥ BNN is more robust than Quan-8bit
models under SA1 and resistance variation,
while HAWIS further improves the
robustness of the binary baseline.
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Analysis of the Searched Architecture

1. HAWIS architectures commonly possess
more channels in the front layers and
fewer channels in the tail layers.

2. HAWIS has a bottleneck-like structure in
ResNet-32.(narrow width for 8/18/28 and
larger width for 9/19/29-th layer).

3. The selected channel numbers are
energy-efficient(full utilization).
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Thanks for your listening!
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